Programming Guide - Genomic Range Indexing
GenomicSQLite enables creation of a Genomic Range Index (GRI) for any database table in which each row represents a genomic feature with (chromosome, beginPosition, endPosition) coordinates. The coordinates may be sourced from table columns or by computing arithmetic expressions thereof. The index tracks any updates to the underlying table as usual, with one caveat explained below.
Once indexed, the table can be queried for all features overlapping a query range. A GRI query yields a rowid set, which your SQL query can select from the indexed table for further filtering or analysis. Please review the brief SQLite documentation on rowid and Autoincrement.
Conventions
Range positions are considered zero-based & half-open, so the length of a feature is exactly endPosition-beginPosition nucleotides. The implementation doesn't strictly require this convention, but we strongly recommend observing it to minimize confusion. There is no practical limit on chromosome length, as position values may go up to 260, but queries have a runtime factor logarithmic in the maximum feature length.
The extension provides routines to populate a small _gri_refseq
table describing the genomic reference sequences, which other tables can reference by integer ID ("rid") instead of storing a column with textual sequence names like 'chr10'. This convention is not required, as the GRI can index either chromosome name or rid columns, but reasons to observe it include:
- Integers are more compact and faster to look up.
- Results sort properly with
ORDER BY rid
instead of considering e.g.'chr10'
<'chr2'
lexicographically. (See also the UINT collating sequence, below) - A table with chromosome names can be reconstructed easily by joining with
_gri_refseq
.
Create GRI
↪ Create Genomic Range Index SQL: Generate a string containing a series of SQL statements which when executed create a GRI on an existing table. Executing them is left to the caller, perhaps after logging the contents. The statements should be executed within a transaction to succeed or fail atomically.
create_gri_sql = genomicsqlite.create_genomic_range_index_sql(
dbconn,
'tableName',
'chromosome',
'beginPosition',
'endPosition'
)
dbconn.executescript(create_gri_sql)
String griSql = GenomicSQLite.createGenomicRangeIndexSQL(
dbconn,
"tableName",
"chromosome",
"beginPosition",
"endPosition"
);
dbconn.createStatement().executeUpdate(griSql);
let gri_sql = dbconn
.create_genomic_range_index_sql("tableName", "chromosome",
"beginPosition", "endPosition")?;
dbconn.execute_batch(&gri_sql)?;
std::string CreateGenomicRangeIndexSQL(
const std::string &table,
const std::string &rid,
const std::string &beg,
const std::string &end,
int floor = -1
);
std::string create_gri_sql = CreateGenomicRangeIndexSQL(
"tableName", "chromosome", "beginPosition", "endPosition"
);
// SQLite::Database* dbconn in a transaction
dbconn->exec(create_gri_sql);
std::string CreateGenomicRangeIndexSQL(
const std::string &table,
const std::string &rid,
const std::string &beg,
const std::string &end,
int floor = -1
);
std::string create_gri_sql = CreateGenomicRangeIndexSQL(
"tableName", "chromosome", "beginPosition", "endPosition"
);
// sqlite3* dbconn in a transaction
char* errmsg = nullptr;
int rc = sqlite3_exec(dbconn, create_gri_sql.c_str(), nullptr, nullptr, &errmsg);
// check rc, free errmsg
char* create_genomic_range_index_sql(
const char* table,
const char* rid,
const char* beg,
const char* end,
int floor
);
char* create_gri_sql = create_genomic_range_index_sql(
"tableName", "chromosome", "beginPosition", "endPosition", -1
);
if (*create_gri_sql) {
char* errmsg = 0;
/* sqlite3* dbconn in a transaction */
int rc = sqlite3_exec(dbconn, create_gri_sql, 0, 0, &errmsg);
/* check rc, free errmsg */
} else {
/* General note: all GenomicSQLite C routines returning a char* string use
* the following convention:
* If the operation suceeds then it's a nonempty, null-terminated string.
* Otherwise it points to a null byte followed immediately by a nonempty,
* null-terminated error message.
* IN EITHER CASE, the caller should free the string with sqlite3_free().
* Null is returned only if malloc failed.
*/
}
sqlite3_free(create_gri_sql);
The three arguments following the table name tell the indexing procedure how to read the feature coordinates from each table row.
- The reference sequence may be sourced either by the name of a text column containing names like 'chr10', or of an integer reference ID (rid) column, as discussed above.
- The begin and end positions are read from named integer columns, or by computing simple arithmetic expressions thereof.
- For example, if the table happens to have
beginPosition
andfeatureLength
columns, the end position may be formulated'beginPosition+featureLength'
.
❗ The table name and expressions are textually pasted into a template SQL script. Take care to prevent SQL injection, if they're in any way determined by external input.
A last optional integer argument floor
can be omitted or left at -1. GRI performance may be improved slightly by setting floor
to a positive integer F if the following is true: the lengths of the indexed features are almost all >16F-1, with only very few outlier lengths ≤16F-1. For example, human exons are almost all >16nt; one may therefore set floor=2
as a modest optimization for such data. YMMV
The indexing script will, among other steps, add a few generated columns to the original table. So if you later SELECT * FROM tableName
, you'll get these extra values back (column names starting with _gri_
). The extra columns are "virtual" so they don't take up space in the table itself, but they do end up populating the stored index.
At present, GRI cannot be used on WITHOUT ROWID tables.
Query GRI
The extension supplies a special SQL function to query a GRI-indexed table, generating the set of rowids identifying features that overlap a query range (queryChrom, queryBegin, queryEnd):
genomic_range_rowids(tableName, queryChrom, queryBegin, queryEnd[, ceiling, floor])
This is typically used to retrieve the result rows by selecting for tableName._rowid_ IN genomic_range_rowids(...)
. For example,
SELECT col1, col2, ... FROM exons WHERE exons._rowid_ IN
genomic_range_rowids('exons', 'chr12', 111803912, 111804012)
The queryChrom parameter might have SQL type TEXT or INTEGER, according to whether the GRI indexes name or rid.
The ordered rowid set identifies the features satisfying,
queryChrom = featureChrom AND
NOT (queryBegin > featureEnd OR queryEnd < featureBegin)
("query is not disjoint from feature")
❗ This includes features that abut as well as those that overlap the query range, per the half-open position convention. If you don't want those, or if you want only "contained" features, add a WHERE clause to your query (e.g. WHERE _gri_beg >= queryBeg AND _gri_beg+_gri_len <= queryEnd
).
❗ Results return in rowid order, which isn't necessarily genomic range order (see Advice for big data, below). Add an ORDER BY clause to your query if needed (e.g. ORDER BY _gri_rid, _gri_beg, _gri_len
).
The query won't match any rows with NULL feature coordinates. If needed, the GRI can inform this query for NULL chromosome/rid: SELECT ... FROM tableName WHERE _gri_rid IS NULL
.
Level bounds optimization
The optional, trailing ceiling
& floor
arguments to genomic_range_rowids()
optimize GRI queries by bounding their search levels, skipping steps that'd be useless in view of the overall length distribution of the indexed features. (See Internals for full explanation.)
The extension supplies a SQL helper function genomic_range_index_levels(tableName)
to detect appropriate level bounds for the current version of the table. Example usage:
SELECT col1, col2, ... FROM exons, genomic_range_index_levels('exons')
WHERE exons._rowid_ IN
genomic_range_rowids('exons', 'chr12', 111803912, 111804012,
_gri_ceiling, _gri_floor)
Here _gri_ceiling
and _gri_floor
are columns of the single row computed by genomic_range_index_levels('exons')
.
genomic_range_index_levels()
performs some upfront analysis of table's GRI upon its first use on any database connection. The cost of this analysis should be worthwhile if it's used to optimize many genomic_range_rowids()
operations (but not just one or a few). Subsequent uses of genomic_range_index_levels()
on the same connection & table reuse the first analysis, unless the database changes in the meantime, in which case the analysis must be redone. This suggests using genomic_range_index_levels()
only once the database is read-only.
Instead of detecting current bounds, they can be figured manually as follows. Set the integer ceiling to C, 0 < C < 16, such that all (present & future) indexed features are guaranteed to have lengths ≤16C. For example, if you're querying features on the human genome, then you can set ceiling=7 because the lengthiest chromosome sequence is <167nt. Set the integer floor F to (i) the floor value supplied at GRI creation, if any; (ii) F > 0 such that the minimum possible feature length >16F-1, if any; or (iii) zero. The safe, default bounds are C=15, F=0. GRI queries with inappropriate bounds are liable to produce incomplete results.
Joining tables on range overlap
Suppose we have two tables with genomic features to join on range overlap. Only the "right-hand" table must have a GRI; preferably the smaller of the two. For example, annotating a table of variants with the surrounding exon(s), if any:
SELECT variants.*, exons._rowid_
FROM variants LEFT JOIN exons ON exons._rowid_ IN
genomic_range_rowids(
'exons',
variants.chrom,
variants.beginPos,
variants.endPos
)
We fill out the GRI query range using the three coordinate columns of the variants table.
We may be able to speed this up by supplying level bounds, as discussed above:
SELECT variants.*, exons._rowid_
FROM genomic_range_index_levels('exons'),
variants LEFT JOIN exons ON exons._rowid_ IN
genomic_range_rowids(
'exons',
variants.chrom,
variants.beginPos,
variants.endPos,
_gri_ceiling,
_gri_floor
)
See also "Advice for big data" below on optimizing storage layout for GRI queries.
Reference genome metadata
The following routines support the aforementioned, recommended convention for storing a _gri_refseq
table with information about the genomic reference sequences, which other tables can cross-reference by integer ID (rid) instead of storing textual chromosome names. The columns of _gri_refseq
include:
_gri_rid INTEGER PRIMARY KEY
gri_refseq_name TEXT NOT NULL
gri_refseq_length INTEGER NOT NULL
gri_assembly TEXT
genome assembly name (optional)gri_refget_id TEXT
refget sequence ID (optional)gri_refseq_meta_json TEXT DEFAULT '{}'
JSON object with arbitrary metadata
↪ Put Reference Assembly SQL: Generate a string containing a series of SQL statements which when executed creates _gri_refseq
and populates it with information about a reference assembly whose details are bundled into the extension.
refseq_sql = genomicsqlite.put_reference_assembly_sql(
dbconn, 'GRCh38_no_alt_analysis_set'
)
dbconn.executescript(refseq_sql)
String refSql = GenomicSQLite.putReferenceAssemblySQL(
dbconn, "GRCh38_no_alt_analysis_set"
);
dbconn.createStatement().executeUpdate(refSql);
let ref_sql = dbconn
.put_reference_assembly_sql("GRCh38_no_alt_analysis_set")?;
dbconn.execute_batch(&ref_sql)?;
std::string PutGenomicReferenceAssemblySQL(
const std::string &assembly,
const std::string &attached_schema = ""
);
// SQLite::Database* dbconn in a transaction
dbconn->exec(PutGenomicReferenceAssemblySQL("GRCh38_no_alt_analysis_set"));
std::string PutGenomicReferenceAssemblySQL(
const std::string &assembly,
const std::string &attached_schema = ""
);
std::string refseq_sql = PutGenomicReferenceAssemblySQL(
"GRCh38_no_alt_analysis_set"
);
// sqlite3* dbconn in a transaction
char* errmsg = nullptr;
int rc = sqlite3_exec(dbconn, refseq_sql.c_str(), nullptr, nullptr, &errmsg);
// check rc, free errmsg
char* put_genomic_reference_assembly_sql(
const char *assembly,
const char *attached_schema
);
char* refseq_sql = put_genomic_reference_assembly_sql(
"GRCh38_no_alt_analysis_set", nullptr
);
if (*refseq_sql) {
char* errmsg = 0;
/* sqlite3* dbconn in a transaction */
int rc = sqlite3_exec(dbconn, refseq_sql, 0, 0, &errmsg);
/* check rc, free errmsg */
} else {
/* see calling convention discussed in previous examples */
}
sqlite3_free(refseq_sql);
Available assemblies:
GRCh38_no_alt_analysis_set
↪ Put Reference Sequence SQL: Generate a string containing a series of SQL statements which when executed creates _gri_refseq
(if it doesn't exist) and adds one reference sequence with supplied attributes.
refseq_sql = genomicsqlite.put_reference_sequence_sql(
dbconn, 'chr17', 83257441
# optional: assembly, refget_id, meta (dict), rid
)
dbconn.executescript(refseq_sql)
String refSql = GenomicSQLite.putReferenceSequenceSQL(
dbconn, "chr17", 83257441L
// optional overloads:
// String assembly, String refget_id, String meta_json, long rid
);
dbconn.createStatement().executeUpdate(refSql);
let chr17 = genomicsqlite::RefSeq {
rid: -1, // -1 = automatic
name: "chr17",
length: 83257441,
assembly: None, // Option<String>
refget_id: None, // Option<String>
meta_json: json::object::Object::new(), // meta_json
};
let ref_sql = dbconn.put_reference_sequence_sql(&chr17)?;
dbconn.execute_batch(&ref_sql)?;
std::string PutGenomicReferenceSequenceSQL(
const std::string &name,
sqlite3_int64 length,
const std::string &assembly = "",
const std::string &refget_id = "",
const std::string &meta_json = "{}",
sqlite3_int64 rid = -1,
const std::string &attached_schema = ""
);
// SQLite::Database* dbconn in a transaction
dbconn->exec(PutGenomicReferenceSequenceSQL("chr17", 83257441));
std::string PutGenomicReferenceSequenceSQL(
const std::string &name,
sqlite3_int64 length,
const std::string &assembly = "",
const std::string &refget_id = "",
const std::string &meta_json = "{}",
sqlite3_int64 rid = -1,
const std::string &attached_schema = ""
);
std::string refseq_sql = PutGenomicReferenceAssemblySQL(
"chr17", 83257441
);
// sqlite3* dbconn in a transaction
char* errmsg = nullptr;
int rc = sqlite3_exec(dbconn, refseq_sql.c_str(), nullptr, nullptr, &errmsg);
// check rc, free errmsg
char* put_genomic_reference_sequence_sql(
const char *name,
sqlite3_int64 length,
const char *assembly,
const char *refget_id,
const char *meta_json,
sqlite3_int64 rid,
const char *attached_schema
);
char* refseq_sql = put_genomic_reference_sequence_sql(
"chr17", 83257441, 0, 0, 0, -1, 0
);
if (*refseq_sql) {
char* errmsg = 0;
/* sqlite3* dbconn in a transaction */
int rc = sqlite3_exec(dbconn, refseq_sql, 0, 0, &errmsg);
/* check rc, free errmsg */
} else {
/* see calling convention discussed in previous examples */
}
sqlite3_free(refseq_sql);
If the rid
argument is omitted or -1 then it will be assigned automatically upon insertion.
↪ Get Reference Sequences by Rid: create an in-memory lookup table of the previously-stored reference information, keyed by rid integer. Assumes the stored information is read-only by this point. This table is for the application code's convenience to read tables that use the rid convention. Such uses can be also be served by SQL join on the _gri_refseq
table (see Cookbook).
class ReferenceSequence(NamedTuple):
rid: int
name: str
length: int
assembly: Optional[str]
refget_id: Optional[str]
meta: Dict[str, Any]
refseq_by_rid = genomicsqlite.get_reference_sequences_by_rid(dbconn)
# refseq_by_rid: Dict[int, ReferenceSequence]
import java.util.HashMap;
import net.mlin.genomicsqlite.ReferenceSequence;
/*
public class ReferenceSequence {
public final long rid, length;
public final String name, assembly, refgetId, metaJson;
}
*/
HashMap<Long, ReferenceSequence> refseqByRid
= GenomicSQLite.getReferenceSequencesByRid(dbconn);
/*
struct RefSeq {
rid: i64,
name: String,
length: i64,
assembly: Option<String>,
refget_id: Option<String>,
meta_json: json::object::Object,
}
*/
let refseqs: HashMap<i64, genomicsqlite::RefSeq> = dbconn
.get_reference_sequences_by_rid()?;
struct gri_refseq_t {
long long rid, length;
std::string name, assembly, refget_id, meta_json;
};
std::map<long long, gri_refseq_t> GetGenomicReferenceSequencesByRid(
sqlite3 *dbconn,
const std::string &assembly = "",
const std::string &attached_schema = ""
);
// SQLite::Database* dbconn
auto refseq_by_rid = GetGenomicReferenceSequencesByRid(dbconn->getHandle());
struct gri_refseq_t {
long long rid, length;
std::string name, assembly, refget_id, meta_json;
};
std::map<long long, gri_refseq_t> GetGenomicReferenceSequencesByRid(
sqlite3 *dbconn,
const std::string &assembly = "",
const std::string &attached_schema = ""
);
// sqlite3* dbconn
auto refseq_by_rid = GetGenomicReferenceSequencesByRid(dbconn);
/* Omitted for want of idiomatic map type; pull requests welcome! */
The optional assembly
argument restricts the retrieved sequences to those with matching gri_assembly
value. However, mixing different assemblies in _gri_refseq
is not recommended.
↪ Get Reference Sequences by Name: create an in-memory lookup table of the previously-stored reference information, keyed by sequence name. Assumes the stored information is read-only by this point. This table is for the application code's convenience to translate name to rid whilst formulating queries or inserting features from a text source.
class ReferenceSequence(NamedTuple):
rid: int
name: str
length: int
assembly: Optional[str]
refget_id: Optional[str]
meta: Dict[str, Any]
refseq_by_name = genomicsqlite.get_reference_sequences_by_name(dbconn)
# refseq_by_name: Dict[str, ReferenceSequence]
import java.util.HashMap;
import net.mlin.genomicsqlite.ReferenceSequence;
/*
public class ReferenceSequence {
public final long rid, length;
public final String name, assembly, refgetId, metaJson;
}
*/
HashMap<String, ReferenceSequence> refseqByName
= GenomicSQLite.getReferenceSequencesByName(dbconn);
/*
struct RefSeq {
rid: i64,
name: String,
length: i64,
assembly: Option<String>,
refget_id: Option<String>,
meta_json: json::object::Object,
}
*/
let refseqs: HashMap<String, genomicsqlite::RefSeq> = dbconn
.get_reference_sequences_by_name()?;
struct gri_refseq_t {
long long rid, length;
std::string name, assembly, refget_id, meta_json;
};
std::map<std::string, gri_refseq_t> GetGenomicReferenceSequencesByName(
sqlite3 *dbconn,
const std::string &assembly = "",
const std::string &attached_schema = ""
);
// SQLite::Database* dbconn
auto refseq_by_name = GetGenomicReferenceSequencesByName(dbconn->getHandle());
struct gri_refseq_t {
long long rid, length;
std::string name, assembly, refget_id, meta_json;
};
std::map<std::string, gri_refseq_t> GetGenomicReferenceSequencesByName(
sqlite3 *dbconn,
const std::string &assembly = "",
const std::string &attached_schema = ""
);
// sqlite3* dbconn
auto refseq_by_name = GetGenomicReferenceSequencesByName(dbconn);
/* Omitted for want of idiomatic map type; pull requests welcome! */
Cookbook
rid to chromosome name
Table identifies each feature's chromosome by rid, and we want to see them with text chromosome names.
SELECT gri_refseq_name, feature_table.*
FROM feature_table NATURAL JOIN _gri_refseq
The join key here is _gri_rid
, which is one of the generated columns added by GRI creation.
Alternatively, the application code can read rid from the row and translate it using the lookup table generated by the Get Reference Sequences by Rid routine.
Query rid using chromosome name
We're making a GRI query on a table that stores rid integers, but our query range has a chromosome name.
SELECT feature_table.* FROM
(SELECT _gri_rid AS rid FROM _gri_refseq
WHERE gri_refseq_name='chr12') AS query, feature_table
WHERE feature_table._rowid_ IN
genomic_range_rowids('feature_table',query.rid,111803912,111804012)
We use a subquery to look up the rid corresponding to the known chromosome name. Alternatively, the application code can first convert the query name to rid using the lookup table generated by the Get Reference Sequences by Name routine.
Circular chromosome query
On circular chromosomes, range queries should include features that wrap around the origin to end inside the desired range. If we've stored them naively with featureEnd = featureBegin + featureLength, then we can build a unified query with reference to the stored chromosome lengths:
SELECT col1, col2, ... FROM
(SELECT gri_refseq_length FROM _gri_refseq WHERE _gri_rid = queryRid),
featureTable WHERE featureTable._rowid_ IN
(genomic_range_rowids('featureTable', queryRid, queryBegin, queryEnd)
UNION
genomic_range_rowids(
'featureTable',
queryRid,
gri_refseq_length+queryBegin,
gri_refseq_length+queryEnd))
We query a second range beyond the chromosome length, which will match features that wrap around into the query. UNION
deduplicates the result rowids.
As a convention, set "circular": true
in the _gri_refseq.gri_refseq_meta_json
for circular chromosomes.
Advice for big data
The database file stores tables in rowid order (effectively). It's therefore preferable for a mainly-GRI-queried table to be written in genomic range order, so that the features' (chromosome, beginPosition) monotonically increase with rowid, and range queries enjoy storage/cache locality. See Optimizing storage layout in the compression guide for advice if it isn't straightforward to initally write the rows ordered by (chromosome, beginPosition). Though not required in theory, this may be needed in practice for GRI queries that will match a material fraction of a big table's rows.
A series of many GRI queries (including in service of a join) should also proceed in genomic range order. If this isn't possible, then ideally the database page cache should be enlarged to fit the entire indexed table in memory.
If you expect a GRI query to yield a very large, contiguous rowid result set (e.g. all features on a chromosome, in a table known to be range-sorted), then the following specialized query plan may be advantageous:
- Ask GRI for first relevant rowid,
SELECT MIN(_rowid_) AS firstRowid FROM genomic_range_rowids(...)
- Open a cursor on
SELECT ... FROM tableName WHERE _rowid_ >= firstRowid
- Loop through rows for as long as they're relevant.
But this plan strongly depends on the contiguity assumption.