
Genomic datasets are frequently queried by 
genomic range, e.g. for all features overlapping 
chr2:100,123,000-100,456,000

SQL indexes aren’t immediately suitable for such 
queries, especially for lengthy feature types. We 
added a genomic range index (GRI) to SQLite.

The technique recalls schemes found in tabix, 
UCSC Genome Browser, and Ensembl, but easily 
applied to any SQLite table with (chromosome, 
begin, end) columns. Creating GRI in Python:

dbconn.executescript(
genomicsqlite.create_genomic_range_index_sql(
“myTable”, “chromCol”, “beginCol”, “endCol”))

GRI query in SQL:

SELECT * FROM myTable WHERE myTable._rowid_ 
IN genomic_range_rowids(“myTable”, “chr2”, 
100123000, 100456000)

Michael F. Lin, PhD

Bioinformatics & genomics have long preferred 
minimalistic text file formats for data exchange, 
which are accessible & portable, but also brittle & 
inefficient. 

The production data volumes of next-generation 
sequencing (NGS) motivated compressed binary 
equivalents of initial text formats.

These examples illustrate how abstract data 
models each came to multiple serialized formats.

But when the data models are conceived as file 
formats, they inherit prototypical constraints. They 
prefer line-oriented 1D/2D concepts, they’re 
unindexed & read-only, and they tend to grow by 
grafting new information into free text fields.

Querying them and integrating them with other 
data types are bespoke operations, leading to 
extensive duplication of effort across the field.

Can we uncouple data models from file formats 
without sacrificing portability & efficiency?

Data Models vs. File Formats

SQLite is a lightweight relational database 
manager supporting full-featured SQL operations. 
It’s an efficient local storage engine because it 
doesn’t incur network requests.

The public-domain C language library is accessible 
to all modern platforms and languages, and indeed 
serves aboard almost all computing devices today.

A database is stored in one file, inside which many 
SQL tables and indexes can coexist. Unlike text 
formats, it intrinsically supports indexed access 
and in-place update transactions.

What is SQLite?

Individual databases may grow to many terabytes, 
supported by lesser-known scalability features:

+ Automatic paging between storage & memory
+ Access from many threads
+ Parallel external sorter

Notable too: raw BLOB storage; JSON columns & 
indexes; recursive SQL algorithms.

The new features are packaged in the Genomics 
Extension for SQLite (“GenomicSQLite”, Apache 
licensed). After a special invocation to open the 
database, programmers use it just like SQLite.

import sqlite3
import genomicsqlite

dbconn: sqlite3.Connection = 
genomicsqlite.connect(“compressed.db”)

Language bindings currently for Python, Java/JVM, 
C/C++, and are easy to add. (Help wanted!)

Programming Guide: mlin.github.io/GenomicSQLite

Genomics Extension for SQLite

SQLite’s lack of built-in compression was often 
uneconomical for bioinformatics data storage. 
(Zipped database files would still need to be 
unzipped to access or update.)

We added a general-purpose, read/write 
compression layer to SQLite’s existing file 
pagination scheme. This applies to any database 
schema, totally transparent to SQL operations.

This recalls BAM file compression (BGZF) but with 
transactional updates and the speedier Zstandard. 
Future work can further explore archival database 
storage with columnar & reference-based 
compression.

Database compression

@DNAmlin
dna@mlin.net

Genomic Range Indexing

Moreso than the prior decade, rapid innovation in 
sequencing tech & their informatics techniques 
look set to demand scalable standards for 
numerous new data models.

A container for any schema, with

+ block compression
+ genomic indexing
+ accessibility to all programs (C ABI)
+ vendor neutrality

...could reduce duplication of effort -- permitting 
designers to focus on data model concepts over 
serialization details.

With self-describing SQL schemas, database files 
can be replicated into other SQL-based systems 
easily, without schema-specific conversion logic.

Interoperability with the “big data” ecosystem is 
vastly improved, and ultimately, integration with 
pheno/clinical data where relational databases are 
preferred.

But, project is young; help wanted: bindings, 
archival compression, dense array storage

Are we there yet?

SQLite: Grand Unified Genomics File Format? github.com/mlin/
GenomicSQLite

Decoupling genomic data models from custom file 
formats has been a longstanding interest of 
GA4GH technical committees.

It’s been challenging due to our demanding 
performance & compression needs, and inclination 
to neutrality amongst stacks/platforms/vendors. 

We revisit SQL as a primary medium for defining 
genomic data models. Perhaps SQLite -- with a few 
key features added -- can serve as a portable file 
format for any data model, better enabling 
interoperation with the “big data” ecosystem.

Introduction

VCF BCF BED bigBed

SAM BAM CRAM

SAM alignments
data model

SAM BAM CRAM

VCF variants 
data model

VCF BCF

BED features 
data model

BED bigBed

Compressed database file

Uncompressed cache memory

SQL executor

★ Zstandard + dictionary training
★ Background threads for compression
★ Background prefetch & decompression

≤64 KiB

table reads & writes

query
begin

query
end

level 3 ≤4096nt
(transposons...)

level 2 ≤256nt
(exons...)

level 1 ≤16nt
(NGS indels…)

The feature index is partitioned by length magnitude. Features on 
each “level” are searched by begin position in the query range, 
extended upstream by the level max length (blue background). 
Higher levels search longer ranges, but only for features of 
comparable length. Finally, the multi-level results are unioned.


