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Introduction

We have previously described PhyloCSF, a method that analyzes a multi-species nucleotide sequence
alignment to determine whether it is likely to represent a protein-coding region [1]. PhyloCSF is based
on a statistical comparison of empirical codon models (ECMs), which use thousands of parameters to
model the rates of all possible codon substitutions on the phylogenetic tree relating the aligned species
[2]. Estimating these ECMs requires alignments of many thousands of known coding and non-coding
regions as training data. This presents an obstacle for using PhyloCSF in genomes that do not already
have high-quality protein-coding gene annotations.

In this note, we describe an alternative mode implemented in the PhyloCSF software that performs
a comparison of much simpler codon models, which do not require such training data. The approach
is very similar to the dN/dS likelihood ratio test mentioned in our previous publications [1, 3] and
implemented in PAML [4], but with a few useful tweaks. This alternative mode is not as accurate as
the full ECM-based PhyloCSF method, but it can be applied immediately to alignments of any closely
related species, requiring only a reasonable estimate of the phylogenetic tree relating them.

Brief review of the dN/dS test

The dN/dS test uses phylogenetic codon models (recently reviewed in [5] and [6]) to test for evidence
that non-synonymous codon substitutions have occurred at significantly lower rates than synonymous
substitutions in a given alignment. Specifically, the codon rate matrix is parameterized by the dN/dS
ratio ω, the transition/transversion rate ratio κ, and the vector of codon frequencies π (further details
given below). In addition to the rate matrix parameters, PAML takes an assumed tree topology as input
and estimates each individual branch length.

In alignments of conserved coding regions, we expect ω < 1, while under neutral or non-coding
evolution, we expect ω ≈ 1; κ, π, and the branch lengths are essentially nuisance parameters. To
evaluate a given alignment, we compute its probability under maximum likelihood estimates (MLEs) of
all parameters, and its probability under the constraint that ω = 1 and MLEs of the other parameters.
We then report the log-ratio of these two likelihoods as the score for the alignment (if the estimated
ω < 1).

The new test implemented in PhyloCSF differs from this approach in three relatively minor ways.
First, while PAML’s models exclude stop codons and require them to be censored in the input alignments,
we explicitly model the expected absence of stop codons in coding regions. As a result, the appearance
of a stop codon in an input alignment leads to a penalty in its score. Second, like the full PhyloCSF
method, we avoid estimating each individual branch length (which is difficult in a short alignment),
instead estimating a scale factor for a predefined tree “shape.” This tree shape is the only additional
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information needed to evaluate a given alignment, and can be estimated using standard phylogenetic
tools based on alignments of just a few known genes. Third, since the MLEs of some of the parameters
can be poorly behaved in very short alignments, we regularize our estimates using weakly-informative
prior distributions.

Codon model parameterization

We now give a detailed specification for the phylogenetic codon models used in our new test. The rate
matrix uses a typical GY94 formulation [7, 5, 6], with the exception that we explicitly model substitution
rates for the three stop codons, resulting in a 64× 64 rate matrix rather than the 61× 61 typically used
in codon models.

qij ∝



ωπj if i and j are non-synonymous sense codons and differ by one transversion,

ωκπj if i and j are non-synonymous sense codons and differ by one transition,

πj if i and j are synonymous codons (or either is stop) and differ by one transversion,

κπj if i and j are synonymous codons (or either is stop) and differ by one transition,

−
∑

k 6=i qik if i = j,

0 otherwise.

The full rate matrix Q is scaled to unity mean rate of replacement at equilibrium. Note that ω does not
apply to nonsense substitution rates; instead, these rates are penalized through the codon frequencies
π.

Our parameterization for π is also a slight variant of the typical F3×4 approach [8]. Let φpa represent
codon position-specific nucleotide frequencies, with

∑
a∈{A,C,G,T} φ

p
a = 1 for each p ∈ {1, 2, 3}. For

example, φ2C is the frequency of C in the second codon position. We also define a new parameter σ to
model a reduction in the frequency of the three stop codons, relative to expectation under F3×4.

πxyz ∝

{
σφ1xφ

2
yφ

3
z if xyz is a stop codon,

φ1xφ
2
yφ

3
z otherwise

and
∑

xyz πxyz = 1. The scale factor to ensure this is 1/
(
1− (1− σ)

(
φ1Tφ

2
Aφ

3
A + φ1Tφ

2
Aφ

3
G + φ1Tφ

2
Gφ

3
A

))
.

Lastly, as previously mentioned, we avoid estimating each individual branch length in the assumed
phylogenetic tree. Instead, we assume a fixed tree “shape” specifying a relative length of each branch,
and use a single alignment-specific parameter ρ, which operates as a scale factor on the tree shape, to
determine the absolute branch lengths. That is, if branch i has length ti in the tree shape, it has length
ρti in the model where ρ is variable, and shared throughout the tree.

Omega Test: Bayesian formulation

We now describe a Bayesian hypothesis-testing approach to distinguish coding and non-coding regions
based on this codon model. To evaluate a given alignment A, we wish to formally test for evidence
that ω < 1 and σ < 1. Specifically, we define a “null hypothesis” H0 corresponding to ω = 1, σ = 1,
and a composite alternative hypothesis H1 specifying prior distributions for ω and σ, strongly preferring
ω < 1 and σ < 1. Additionally, both H0 and H1 specify diffuse prior distributions for κ ∈ [1,∞) and
ρ ∈ [0,∞).

We compute the Bayes factor for H1 against H0,
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K =
Pr(A|H1)

Pr(A|H0)

=

∫∫∫∫
Pr(ρ) Pr(κ) Pr(ω) Pr(σ) Pr(A|ρ, κ, ω, σ) dρ dκ dω dσ∫∫

Pr(ρ) Pr(κ) Pr(A|ρ, κ, ω = 1, σ = 1) dρ dκ

If logK > 0, then under our model’s assumptions the evidence in the alignment favors H1. K can
also be combined with prior probabilities for H1 and H0 to determine a posterior probability Pr(H1|A)
[9].

For the parameter priors, we used:

ρ− 1 ∼ half-Cauchy(1)

κ− 1 ∼ Gamma(4, 12)

ω ∼ Beta(1, 8)

σ ∼ Beta(1, 8)

The “half-Cauchy” prior we suggest for ρ (the Cauchy distribution defined only on non-negative
reals) has a nice property of entertaining arbitrarily small values of ρ, including ρ = 0 [10]. As a
practical matter, we use F3×4 point estimates for the codon frequency parameters [8].

Although we have successfully experimented with this approach using reversible-jump MCMC, we
do not consider it computationally cost-effective for genome-wide application to many thousands of
candidate regions, as we intend our software to be used. We next describe a more practical approximation
implemented in our software, but it is useful to have the fully-Bayesian formulation in mind.

Omega Test: implemented formulation

Our implemented version computes an approximate Bayes factor using predefined point estimates of ω
and σ and maximum a posteriori (MAP) estimates of ρ and κ.

K̃ =
maxρ,κ Pr(ρ) Pr(κ) Pr(A|ρ, κ, ω = 0.2, σ = 0.01)

maxρ,κ Pr(ρ) Pr(κ) Pr(A|ρ, κ, ω = 1, σ = 1)

The priors for the nuisance parameters ρ and κ mainly serve to regularize the MAP estimates, which
is useful in very short alignments. For example, if we examine a short alignment that happens to show no
transversions, then the MLE of κ is infinite. This creates some practical difficulties in implementation,
which we can avoid by instead computing the MAP estimate with the diffuse prior.

The use of small point estimates for ω and σ reflects the fact that we are mainly interested in the very
large reductions in non-synonymous rates and stop codon frequencies that any conserved coding region
should exhibit. In particular, we are fine with returning a low score for an alignment in which the “true” ω
is 0.9, even if we could in principle detect a statistically significant reduction. Furthermore, an alignment
with a “true” ω much smaller than 0.2 will still be much more probable under this assumed value than
under ω = 1. The small assumed value of σ effectively leads to a large penalty for the appearance of
stop codons in the alignment. It would be straightforward to also compute MAP estimates of ω and σ,
but the method as described is already considerably slower than the full PhyloCSF method (which only
searches for an MLE of ρ). The exact assumed values of ω and σ can be adjusted by the user.
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